Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: covidwho-20231880

RESUMEN

Elucidation of the redox pathways in severe coronavirus disease 2019 (COVID-19) might aid in the treatment and management of the disease. However, the roles of individual reactive oxygen species (ROS) and individual reactive nitrogen species (RNS) in COVID-19 severity have not been studied to date. The main objective of this research was to assess the levels of individual ROS and RNS in the sera of COVID-19 patients. The roles of individual ROS and RNS in COVID-19 severity and their usefulness as potential disease severity biomarkers were also clarified for the first time. The current case-control study enrolled 110 COVID-19-positive patients and 50 healthy controls of both genders. The serum levels of three individual RNS (nitric oxide (NO•), nitrogen dioxide (ONO-), and peroxynitrite (ONOO-)) and four ROS (superoxide anion (O2•-), hydroxyl radical (•OH), singlet oxygen (1O2), and hydrogen peroxide (H2O2)) were measured. All subjects underwent thorough clinical and routine laboratory evaluations. The main biochemical markers for disease severity were measured and correlated with the ROS and RNS levels, and they included tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), the neutrophil-to-lymphocyte ratio (NLR), and angiotensin-converting enzyme 2 (ACE2). The results indicated that the serum levels of individual ROS and RNS were significantly higher in COVID-19 patients than in healthy subjects. The correlations between the serum levels of ROS and RNS and the biochemical markers ranged from moderate to very strongly positive. Moreover, significantly elevated serum levels of ROS and RNS were observed in intensive care unit (ICU) patients compared with non-ICU patients. Thus, ROS and RNS concentrations in serum can be used as biomarkers to track the prognosis of COVID-19. This investigation demonstrated that oxidative and nitrative stress play a role in the etiology of COVID-19 and contribute to disease severity; thus, ROS and RNS are probable innovative targets in COVID-19 therapeutics.


Asunto(s)
COVID-19 , Oxígeno , Humanos , Femenino , Masculino , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Estudios de Casos y Controles , Especies de Nitrógeno Reactivo/metabolismo , Óxido Nítrico , Biomarcadores , Gravedad del Paciente
2.
Anal Biochem ; 670: 115137, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2275961

RESUMEN

Chemiluminescence was used to test the susceptibility of the SARS-CoV-2 N and S proteins to oxidation by reactive oxygen species (ROS) at pH 7.4 and pH 8.5. The Fenton's system generates various ROS (H2O2, OH, -OH, OOH). All proteins were found to significantly suppress oxidation (the viral proteins exhibited 25-60% effect compared to albumin). In the second system, H2O2 was used both as a strong oxidant and as a ROS. A similar effect was observed (30-70%); N protein approached the effect of albumin at physiological pH (∼45%). In the O2.--generation system, albumin was most effective in the suppression of generated radicals (75%, pH 7.4). The viral proteins were more susceptible to oxidation (inhibition effect no more than 20%, compared to albumin). The standard antioxidant assay confirmed the strong antioxidant capacity of both viral proteins (1.5-1.7 fold higher than albumin). These results demonstrate the effective and significant inhibition of ROS-induced oxidation by the proteins. Obviously, the viral proteins could not be involved in the oxidative stress reactions during the course of the infection. They even suppress the metabolites involved in its progression. These results can be explained by their structure. Probably, an evolutionary self-defense mechanism of the virus has been developed.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes , Peróxido de Hidrógeno/metabolismo , Glicoproteína de la Espiga del Coronavirus , Nucleocápside/metabolismo , Inflamación , Albúminas , Anticuerpos Antivirales
3.
Front Immunol ; 13: 1031248, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2198876

RESUMEN

Background: Limited data are available regarding the differences between immunological, biochemical, and cellular contents of human colostrum following maternal infection during pregnancy with coronavirus 2 disease (COVID-19). Objective: To investigate whether maternal COVID-19 infection may affect immunological, biochemical, and cellular contents of human colostrum. Methods: Using a case-control study design, we collected colostrum from 14 lactating women with a previous diagnosis of COVID-19 during pregnancy and 12 without a clear diagnosis during September 2020 to May 2021. Colostrum samples were analysed for some enzymes and non-enzymatic oxidative stress markers (SOD, CAT, GPx, MDA, GSH, GSSG, H2O2, MPO) and for IL-1ß, IL-6, tumour necrosis factor (TNF)-α, protein induced by interferon gamma (IP)-10, IL-8, IFN-λ1, IL12p70, IFN-α2, IFN-λ2/3, granulocyte macrophage colony stimulating factor (GM-CSF), IFN-ß, IL-10 and IFN-γ, along with IgA and IgG for the SARS-CoV-2 S protein. We perform immunophenotyping to assess the frequency of different cell types in the colostrum. Results: Colostrum from the COVID-19 symptomatic group in pregnancy contained reduced levels of H2O2, IFN-α2, and GM-CSF. This group had higher levels of GSH, and both NK cell subtypes CD3-CD56brightCD16-CD27+IFN-γ+ and CD3-CD56dimCD16+CD27- were also increased. Conclusion: The present results reinforce the protective role of colostrum even in the case of mild SARS-Cov-2 infection, in addition to demonstrating how adaptive the composition of colostrum is after infections. It also supports the recommendation to encourage lactating women to continue breastfeeding after COVID-19 illness.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Embarazo , Femenino , Humanos , Citocinas/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Calostro/metabolismo , COVID-19/metabolismo , Estudios de Casos y Controles , Peróxido de Hidrógeno/metabolismo , Lactancia , SARS-CoV-2 , Interferón gamma/metabolismo , Complicaciones Infecciosas del Embarazo/metabolismo
4.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1580702

RESUMEN

Right ventricular (RV) and left ventricular (LV) dysfunction is common in a significant number of hospitalized coronavirus disease 2019 (COVID-19) patients. This study was conducted to assess whether the improved mitochondrial bioenergetics by cardiometabolic drug meldonium can attenuate the development of ventricular dysfunction in experimental RV and LV dysfunction models, which resemble ventricular dysfunction in COVID-19 patients. Effects of meldonium were assessed in rats with pulmonary hypertension-induced RV failure and in mice with inflammation-induced LV dysfunction. Rats with RV failure showed decreased RV fractional area change (RVFAC) and hypertrophy. Treatment with meldonium attenuated the development of RV hypertrophy and increased RVFAC by 50%. Mice with inflammation-induced LV dysfunction had decreased LV ejection fraction (LVEF) by 30%. Treatment with meldonium prevented the decrease in LVEF. A decrease in the mitochondrial fatty acid oxidation with a concomitant increase in pyruvate metabolism was noted in the cardiac fibers of the rats and mice with RV and LV failure, respectively. Meldonium treatment in both models restored mitochondrial bioenergetics. The results show that meldonium treatment prevents the development of RV and LV systolic dysfunction by enhancing mitochondrial function in experimental models of ventricular dysfunction that resembles cardiovascular complications in COVID-19 patients.


Asunto(s)
Cardiotónicos/farmacología , Metilhidrazinas/farmacología , Animales , COVID-19/complicaciones , Cardiotónicos/uso terapéutico , Cardiotoxicidad/tratamiento farmacológico , Modelos Animales de Enfermedad , Endotelio/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Pulmón/efectos de los fármacos , Masculino , Metilhidrazinas/uso terapéutico , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Saturación de Oxígeno/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Volumen Sistólico/efectos de los fármacos , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Derecha/tratamiento farmacológico , Tratamiento Farmacológico de COVID-19
5.
J Enzyme Inhib Med Chem ; 36(1): 659-668, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1109085

RESUMEN

Human intestinal epithelial cell line-6 (HIEC-6) cells and primary human hepatocytes (PHHs) were treated with 3-amidinophenylalanine-derived inhibitors of trypsin-like serine proteases for 24 hours. It was proven that treatment with MI-1900 and MI-1907 was tolerated up to 50 µM in HIEC-6. These inhibitors did not cause elevations in extracellular H2O2 levels and in the concentrations of interleukin (IL)-6 and IL-8 and did not alter occludin distribution in HIEC-6. It was also found that MI-1900 and MI-1907 up to 50 µM did not affect cell viability, IL-6 and IL-8 and occludin levels of PHH. Based on our findings, these inhibitors could be safely applicable at 50 µM in HIEC-6 and in PHH; however, redox status was disturbed in case of PHH. Moreover, it has recently been demonstrated that MI-1900 prevents the replication and spread of the new SARS-CoV-2 in infected Calu-3 cells, most-likely via an inhibition of the membrane-bound host protease TMPRSS2.


Asunto(s)
Antivirales/farmacología , Células Epiteliales/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Fenilalanina/farmacología , Inhibidores de Proteasas/farmacología , Serina Endopeptidasas/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/enzimología , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/enzimología , Humanos , Peróxido de Hidrógeno/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/enzimología , Ocludina/genética , Ocludina/metabolismo , Oxidación-Reducción/efectos de los fármacos , Fenilalanina/análogos & derivados , Cultivo Primario de Células , Serina Endopeptidasas/genética
6.
Free Radic Biol Med ; 165: 184-190, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1056615

RESUMEN

Several recent reviews have suggested a role of oxidative stress in the pathophysiology of COVID-19, but its interplay with disease severity has not been revealed yet. In the present study, we aimed to investigate the association between the severity of COVID-19 and oxidative stress parameters. Clinical data of 77 patients with COVID-19 admitted to the hospital were analyzed and divided into moderate (n = 44) and severe (n = 33) groups based on their clinical condition. Production of oxidant (hydrogen peroxide) and defense antioxidants (total antioxidant capacity, reduced and oxidized glutathione, glutathione s-transferase), and oxidative damage (malondialdehyde, carbonyl, and sulfhydryl) were assessed using the serum samples. The results revealed that severe patients who presented high serum leukocyte count and CRP level stayed for a longer period in the hospital. However, there was no correlation observed between the oxidative stress parameters and degree of COVID-19 severity in the present study. In conclusion, these results indicate that the disease severity may not be a detrimental factor contributing to the changes in the redox profile of hospitalized patients with COVID-19.


Asunto(s)
COVID-19/metabolismo , Estrés Oxidativo/fisiología , SARS-CoV-2/fisiología , Adulto , Anciano , Brasil/epidemiología , COVID-19/epidemiología , Estudios de Cohortes , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Persona de Mediana Edad , Estudios Prospectivos
7.
Adv Mater ; 33(8): e2005477, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1039151

RESUMEN

Besides the pandemic caused by the coronavirus outbreak, many other pathogenic microbes also pose a devastating threat to human health, for instance, pathogenic bacteria. Due to the lack of broad-spectrum antibiotics, it is urgent to develop nonantibiotic strategies to fight bacteria. Herein, inspired by the localized "capture and killing" action of bacteriophages, a virus-like peroxidase-mimic (V-POD-M) is synthesized for efficient bacterial capture (mesoporous spiky structures) and synergistic catalytic sterilization (metal-organic-framework-derived catalytic core). Experimental and theoretical calculations show that the active compound, MoO3 , can serve as a peroxo-complex-intermediate to reduce the free energy for catalyzing H2 O2 , which mainly benefits the generation of •OH radicals. The unique virus-like spikes endow the V-POD-M with fast bacterial capture and killing abilities (nearly 100% at 16 µg mL-1 ). Furthermore, the in vivo experiments show that V-POD-M possesses similar disinfection treatment and wound skin recovery efficiencies to vancomycin. It is suggested that this inexpensive, durable, and highly reactive oxygen species (ROS) catalytic active V-POD-M provides a promising broad-spectrum therapy for nonantibiotic disinfection.


Asunto(s)
Antibacterianos/síntesis química , Materiales Biomiméticos/síntesis química , Óxidos/síntesis química , Peroxidasa/química , Antibacterianos/farmacología , Materiales Biocompatibles/química , Materiales Biomiméticos/farmacología , Catálisis , Humanos , Peróxido de Hidrógeno/metabolismo , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Simulación de Dinámica Molecular , Molibdeno/farmacología , Óxidos/farmacología , Peroxidasa/metabolismo , Esterilización , Vancomicina/farmacología
8.
J Biol Chem ; 295(39): 13458-13473, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1023994

RESUMEN

My interest in biological chemistry proceeded from enzymology in vitro to the study of physiological chemistry in vivo Investigating biological redox reactions, I identified hydrogen peroxide (H2O2) as a normal constituent of aerobic life in eukaryotic cells. This finding led to developments that recognized the essential role of H2O2 in metabolic redox control. Further research included studies on GSH, toxicological aspects (the concept of "redox cycling"), biochemical pharmacology (ebselen), nutritional biochemistry and micronutrients (selenium, carotenoids, flavonoids), and the concept of "oxidative stress." Today, we recognize that oxidative stress is two-sided. It has its positive side in physiology and health in redox signaling, "oxidative eustress," whereas at higher intensity, there is damage to biomolecules with potentially deleterious outcome in pathophysiology and disease, "oxidative distress." Reflecting on these developments, it is gratifying to witness the enormous progress in redox biology brought about by the science community in recent years.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Glutatión/metabolismo , Humanos , Oxidación-Reducción , Estrés Oxidativo
9.
Cells ; 9(6)2020 06 13.
Artículo en Inglés | MEDLINE | ID: covidwho-603067

RESUMEN

There is no vaccine or specific antiviral treatment for COVID-19, which is causing a global pandemic. One current focus is drug repurposing research, but those drugs have limited therapeutic efficacies and known adverse effects. The pathology of COVID-19 is essentially unknown. Without this understanding, it is challenging to discover a successful treatment to be approved for clinical use. This paper addresses several key biological processes of reactive oxygen, halogen and nitrogen species (ROS, RHS and RNS) that play crucial physiological roles in organisms from plants to humans. These include why superoxide dismutases, the enzymes to catalyze the formation of H2O2, are required for protecting ROS-induced injury in cell metabolism, why the amount of ROS/RNS produced by ionizing radiation at clinically relevant doses is ~1000 fold lower than the endogenous ROS/RNS level routinely produced in the cell and why a low level of endogenous RHS plays a crucial role in phagocytosis for immune defense. Herein we propose a plausible amplification mechanism in immune defense: ozone-depleting-like halogen cyclic reactions enhancing RHS effects are responsible for all the mentioned physiological functions, which are activated by H2O2 and deactivated by NO signaling molecule. Our results show that the reaction cycles can be repeated thousands of times and amplify the RHS pathogen-killing (defense) effects by 100,000 fold in phagocytosis, resembling the cyclic ozone-depleting reactions in the stratosphere. It is unraveled that H2O2 is a required protective signaling molecule (angel) in the defense system for human health and its dysfunction can cause many diseases or conditions such as autoimmune disorders, aging and cancer. We also identify a class of potent drugs for effective treatment of invading pathogens such as HIV and SARS-CoV-2 (COVID-19), cancer and other diseases, and provide a molecular mechanism of action of the drugs or candidates.


Asunto(s)
Antivirales/química , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Compuestos Heterocíclicos/uso terapéutico , Hidrocarburos Halogenados/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/inmunología , Animales , Antivirales/uso terapéutico , COVID-19 , Infecciones por Coronavirus/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Lisosomas/efectos de los fármacos , Pandemias , Fagocitosis , Neumonía Viral/metabolismo , Estallido Respiratorio/efectos de los fármacos , Transducción de Señal
10.
Med Hypotheses ; 144: 109999, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-598567

RESUMEN

The majority of fatalities thus far in the COVID-19 pandemic have been attributed to pneumonia. As expected, the fatality rate reported in China is higher in people with chronic pulmonary disease (6.3%) and those who have cancer (5.6%). According to the American College of Cardiology Clinical Bulletin "COVID-19 Clinical Guidance for the CV Care Team", there is a significantly higher fatality rate in people who are elderly (8.0% 70-79 years; 14.8% ≥80 years), diabetic (7.3%), hypertensive (6.0%), or have known cardiovascular disease (CVD) (10.5%). We propose a biological reason for the higher mortality risk in these populations that is apparent. We further present a set of pathophysiological reasons for the heightened danger that could lead to therapies for enhanced management and prevention.


Asunto(s)
COVID-19/epidemiología , Inmunidad Innata , Pandemias , Adulto , Envejecimiento/inmunología , COVID-19/etiología , COVID-19/inmunología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/inmunología , Niño , Diabetes Mellitus/epidemiología , Diabetes Mellitus/inmunología , Susceptibilidad a Enfermedades , Humanos , Peróxido de Hidrógeno/metabolismo , Hipertensión/epidemiología , Hipertensión/inmunología , Ácido Hipocloroso/metabolismo , Pulmón/irrigación sanguínea , Pulmón/inmunología , Microcirculación , Microvasos/fisiopatología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Peroxidasa/metabolismo , Factores de Riesgo , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA